TOSHIBA CCD Image Sensor CCD (charge coupled device)

TCD2905D

The TCD2905D is a high sensitive and low dark current 5400 elements $\times 6$ line CCD color image sensor which includes CCD drive circuit and clamp circuit. The sensor is designed for
scanner.

The device contains a row of 5400 elements $\times 6$ line staggered photodiodes which provide a 48 lines $/ \mathrm{mm}$ (1200 dpi) across a A4 size paper. The device is operated by 5 V pulse and 12 V power supply.

Features

Weight: 4.5 g (typ.)

- Number of Image Sensing Elements: 5400 elements $\times 6$ line
- Image Sensing Element Size: $5.25 \mu \mathrm{~m}$ by $5.25 \mu \mathrm{~m}$ on $5.25 \mu \mathrm{~m}$
- Photo Sensing Region: High sensitive and low dark current PN photodiode
- Distanced Between Photodiode Array: 63 um (12 lines)
- Clock: 2 phase (5 V)
- Power Supply:12 V Power Supply Voltage
- Internal Circuit: Clamp Circuit
- Package: 22 pin CERDIP Package
- Color Filter: Red, Green, Blue

Maximum Ratings (Note1)

Characteristic	Symbol	Rating	Unit
Clock pulse voltage	$V_{\phi A}$	-0.3~8.0	V
Shift pulse voltage	$\mathrm{V}_{\text {SH }}$		
Reset pulse voltage	$\mathrm{V} \overline{\mathrm{RS}}$		
Clamp pulse voltage	$V \overline{C P}$		
Switch pulse voltage	$\mathrm{V} \overline{\text { sw }}$		
Power supply voltage	$V_{\text {OD }}$	-0.3~15	V
Operating temperature	Topr	0~60	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-25~85	${ }^{\circ} \mathrm{C}$

Note 1: All voltage are with respect to SS terminals (ground).

Pin Connections (top view)

Block Diagram

Pin Names

Pin No.	Symbol	Name	Pin No.	Symbol	Name
1	OS3	Signal Output 3 (red)	12	SH2	Shift Gate 2
2	SS	Ground	13	SH1	Shift Gate 1
3	$\overline{R S}$	Reset Gate	14	$\phi 1 \mathrm{~A} 1$	Clock 1 (phase 1)
4	$\overline{\text { CP }}$	Clamp Gate	15	$\phi 2 \mathrm{~A} 1$	Clock 1 (phase 2)
5	NC	Non Connection	16	NC	Non Connection
6	NC	Non Connection	17	NC	Non Connection
7	NC	Non Connection	18	NC	Non Connection
8	$\phi 2 A 2$	Clock 2 (phase 2)	19	$\overline{\text { SW }}$	Switch Gate
9	$\phi 1$ A2	Clock 2 (phase 1)	20	OD	Power
10	SH3	Shift Gate 3	22	OS1	Signal Output 1 (blue)
11	SS	Ground		Signal Output 2 (green)	

Optical/Electrical Characteristics
($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{OD}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SW}}=5 \mathrm{~V}, \mathrm{~V}_{\phi}=\mathrm{V}_{\mathrm{SH}}=\mathrm{V}_{\overline{\mathrm{RS}}}=\mathrm{V} \overline{\mathrm{CP}}=5 \mathrm{~V}$ (pulse), $\mathrm{f}_{\phi}=1 \mathrm{MHz}$, $\mathrm{f}_{\mathrm{RS}}=\mathbf{2 M H z}, \mathrm{t}_{\mathrm{INT}}=11 \mathrm{~ms}$, light source $=$ a light source $+C M 500 S$ filter $(\mathrm{t}=1 \mathrm{~mm})$, load resistance $=100 \mathrm{k} \Omega$)

Characteristics		Symbol	Min	Typ.	Max	Unit	Note
Sensitivity	Red	$R(\mathrm{R})$	3.2	4.7	6.2	V/lx $\cdot \mathrm{s}$	(Note2)
	Green	R (G)	4.4	6.4	8.4		
	Blue	R (B)	2.5	3.7	4.9		
Photo response non uniformity		PRNU (1)	-	10	20	\%	(Note3)
		PRNU (3)	-	3	12	mV	(Note4)
Register imbalance		RI	-	1	-	\%	(Note5)
Saturation output voltage		$V_{\text {SAT }}$	2.0	2.5	-	V	(Note6)
Saturation exposure		SE	0.24	0.39		lx•s	(Note7)
Dark signal voltage		$V_{\text {DRK }}$	-	0.5	2.0	mV	(Note8)
Dark signal non uniformity		DSNU	-	2.0	7.0	mV	(Note8)
DC power dissipation		PD	-	480	650	mW	
Total transfer efficiency		TTE	92	98	-	\%	
Output impedance		Z_{0}	-	0.3	1.0	$\mathrm{k} \Omega$	
DC output voltage		V_{OS}	5.0	6.0	7.0	V	(Note9)
Reset noise		$V_{\text {RSN }}$	-	0.3	-	V	(Note9)
Random noise		$\mathrm{N}_{\mathrm{D} \sigma}$	-	0.9	-	mV	(Note10)

Note 2: Sensitivity is defined for each color of signal outputs average when the photosensitive surface is applied with the light of uniform illumination and uniform color temperature.

Note 3: PRNU (1) is defined for each color on a single chip by the expressions below when the photosensitive surface is applied with the light of uniform illumination and uniform color temperature.
$\operatorname{PRNU}(1)=\frac{\Delta X}{X} \times 100$ (\%)
Where \bar{X} is average of total signal output and ΔX is the maximum deviation from \bar{X}. The amount of incident light is shown below.

$$
\begin{aligned}
& \text { Red }=1 / 2 \cdot \mathrm{SE} \\
& \text { Green }=1 / 2 \cdot \text { SE } \\
& \text { Blue }=1 / 4 \cdot \mathrm{SE}
\end{aligned}
$$

Note 4: PRNU (3) is defined as maximum voltage with next pixel, where measured at 5% of SE (typ.)
Note 5: Register imbalance is defined as follows.

Note 6: VSAT is defined as minimum saturation output of all effective pixels.

Note 7: Definition of SE
$S E=\frac{V_{S A T}}{R_{G}}(\mid x \cdot s)$

Note 8: $V_{D R K}$ is defined as average dark signal voltage of all effective pixels.
DSNU is defined as different voltage between $\mathrm{V}_{\text {DRK }}$ and $\mathrm{V}_{\mathrm{MDK}}$ when $\mathrm{V}_{\mathrm{MDK}}$ is maximum dark signal voltage.

Note 9: DC signal output voltage is defined as follows.
Reset Noise Voltage is defined as follows.

OS

S

Note 10: Random noise is defined as the standard deviation (sigma) of the output level difference between two adjacent effective pixels under no illumination (i.e. dark conditions) calculated by the following procedure.

(1) Two adjacent pixels (pixel n and $\mathrm{n}+1$) after reference level clamp in one reading are fixed as measurement points.
(2) Each of the output level at video output periods averaged over 200 ns period to get $\mathrm{V}(\mathrm{n})$ and $\mathrm{V}(\mathrm{n}+1)$.
(3) $\mathrm{V}(\mathrm{n}+1)$ is subtracted from $\mathrm{V}(\mathrm{n})$ to get $\Delta \mathrm{V}$.

$$
\Delta \mathrm{V}=\mathrm{V}(\mathrm{n})-\mathrm{V}(\mathrm{n}+1)
$$

(4) The standard deviation of $\Delta \mathrm{V}$ is calculated after procedure (2) and (3) are repeated 30 times (30 readings).

$$
\Delta \mathrm{V}=\frac{1}{30} \sum_{\mathrm{i}=1}^{30}|\Delta \mathrm{Vi}| \quad \sigma=\sqrt{\frac{1}{30} \sum_{\mathrm{i}=1}^{30}\left(\Delta \mathrm{~V}_{\mathrm{i}}-\overline{\Delta \mathrm{V}}\right)^{2}}
$$

(5) Procedure (2), (3) and (4) are repeated 10 times to get sigma value.
(6) 10 sigma values are averaged.

$$
\bar{\sigma}=\frac{1}{10} \sum_{\mathrm{j}=1}^{10} \sigma_{\mathrm{j}}
$$

(7) $\bar{\sigma}$ value calculated using the above procedure is observed $\sqrt{2}$ times larger than that measured relative to the ground level. So we specify random noise as follows.

$$
\mathrm{N}_{\mathrm{D} \sigma}=\frac{1}{\sqrt{2}} \bar{\sigma}
$$

Operating Condition

Characteristics		Symbol	Min	Typ.	Max	Unit
Clock pulse voltage	"H" Level	$\mathrm{V}_{\phi \text { A }}$	4.5	5.0	5.5	V
	"L" Level		0	0	0.3	
Shift pulse voltage	"H" Level	$\mathrm{V}_{\text {SH }}$	4.5	5.0	5.5	V
	"L" Level		0	0	0.5	
Reset pulse voltage	"H" Level	$\mathrm{V} \overline{\mathrm{RS}}$	4.5	5.0	5.5	V
	"L" Level		0	0	0.5	
Clamp pulse voltage	"H" Level	$V \overline{C P}$	4.5	5.0	5.5	V
	"L" Level		0	0	0.5	
Switch pulse voltage	"H" Level	$\mathrm{V} \overline{\mathrm{sw}}$	4.5	5.0	5.5	V
	"L" Level		0	0	0.5	
Power supply voltage		$V_{O D}$	11.4	12.0	13.0	V

Clock Characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Characteristics	Symbol	Min	Typ.	Max	Unit
Clock pulse frequency	$\mathrm{f}_{\phi \mathrm{A}}$	0.15	1.0	5.0	MHz
Reset pulse frequency	$\mathrm{f} \overline{\mathrm{RS}}$	0.3	2.0	10.0	MHz
Clamp pulse frequency	$\mathrm{f} \overline{\mathrm{CP}}$	0.3	2.0	10.0	MHz
Clock capacitance	$\mathrm{C}_{\phi \mathrm{A}}$	-	400	-	pF
Shift gate capacitance	$\mathrm{CSH}_{\mathrm{SH}}$	-	50	-	pF
Reset gate capacitance	$\mathrm{C} \overline{\mathrm{RS}}$	-	10	-	pF
Clamp gate capacitance	$\mathrm{C} \overline{\mathrm{CP}}$	-	10	-	pF
Switch gate capacitance	$\mathrm{C} \overline{\mathrm{SW}}$	-	10	-	pF

Note 11: VOD $=12 \mathrm{~V}$
TOSHIBA
TCD2905D

TOSHIBA

Timing Requirements

Characteristics	Symbol	Min	Typ. (Note 12)	Max	Unit
Pulse timing of SH and ϕ_{1}	t 1	110	1000	-	n
	t 5	800	1000	-	ns
SH pulse rise time, fall time	$\mathrm{t} 2, \mathrm{t} 4$	0	50	-	ns
SH pulse width	t 3	3000	5000	-	ns
$\phi 1, \phi 2$ pulse rise time, fall time	$\mathrm{t} 6, \mathrm{t} 7$	0	50	-	ns
$\overline{\mathrm{RS}}$ pulse rise time, fall time	$\mathrm{t}, \mathrm{t} 10$	0	20	-	ns
$\overline{\mathrm{RS}}$ pulse width	t 9	15	100	-	ns
$\overline{\mathrm{CP}}$ pulse rise time, fall time	$\mathrm{t} 11, \mathrm{t} 13$	0	20	-	ns
$\overline{\mathrm{CP}}$ pulse width	t 12	25	100	-	ns
Pulse timing of $\phi 1 \mathrm{~A}, \phi 2 A$ and $\overline{\mathrm{CP}}$	t 14	10	40	-	ns
Pulse timing of $\overline{\mathrm{RS}}$ and $\overline{\mathrm{CP}}$	t 15	0	100	-	ns
Video data delay time $\quad($ Note 13$)$	$\mathrm{t} 16, \mathrm{t} 17$	-	20	-	ns
Reference level settle time	t 18	-	20	-	ns
	t 19	-	35	-	ns
Pulse timing of SH and $\overline{\mathrm{CP}}$	t 20	0	500	-	ns

Note 12: Typ. is the case of $f \phi=1.0 \mathrm{MHz}$.
Note 13: Load resistance is $100 \mathrm{k} \Omega$.

Typical Spectral Response

Typical Drive Circuit

IC1, 2: TC74HC04AP
TR1, 2, 3: 2SC1815-Y
R1: 150Ω
R2: 1500Ω

Caution

1. Window Glass

The dust and stain on the glass window of the package degrade optical performance of CCD sensor.
Keep the glass window clean by saturating a cotton swab in alcohol and lightly wiping the surface, and allow the glass to dry, by blowing with filtered dry N 2 .

Care should be taken to avoid mechanical or thermal shock because the glass window is easily to damage.

2. Electrostatic Breakdown

Store in shorting clip or in conductive foam to avoid electrostatic breakdown.
CCD Image Sensor is protected against static electricity, but inferior puncture mode device due to static electricity is sometimes detected. In handing the device, it is necessary to execute the following static electricity preventive measures, in order to prevent the trouble rate increase of the manufacturing system due to static electricity.
a. Prevent the generation of static electricity due to friction by making the work with bare hands or by putting on cotton gloves and non-charging working clothes.
b. Discharge the static electricity by providing earth plate or earth wire on the floor, door or stand of the work room.
c. Ground the tools such as soldering iron, radio cutting pliers of or pincer. It is not necessarily required to execute all precaution items for static electricity. It is all right to mitigate the precautions by confirming that the trouble rate within the prescribed range.

3. Incident Light

CCD sensor is sensitive to infrared light.
Note that infrared light component degrades resolution and PRNU of CCD sensor.

4. Lead Frame Forming

Since this package is not strong against mechanical stress, you should not reform the lead frame. We recommend to use a IC-inserter when you assemble to PCB.

5. Soldering

Soldering by the solder flow method cannot be guaranteed because this method may have deleterious effects on prevention of window glass soiling and heat resistance.

Using a soldering iron, complete soldering within ten seconds for lead temperatures of up to $260^{\circ} \mathrm{C}$, or within three seconds for lead temperatures of up to $350^{\circ} \mathrm{C}$.

Application Note

The TCD2905D can be operated in two modes: Normal Readout Mode and Even Line Readout Mode.
Each mode is selected by $\overline{\mathrm{SW}}$ terminal.

$\overline{\text { SW }}$	Mode	Application Example
H	Normal Readout Mode	1200 DPI/A4 Reading
L	Even Line Readout Mode	600 DPI/A4 Reading

Normal Readout Mode

In Normal Readout Mode, the dummy and signal outputs in odd and even lines are read out. This mode provides $1200 \mathrm{DPI} / \mathrm{A} 4$ resolution. The timing for this mode is shown in page 8/21, 9/21 and 10/21.

Even Line Readout Mode

In Even Line Readout Mode, the dummy and signal outputs in even lines are read out. The dummy and signal outputs in odd lines cannot be read out in this mode. This mode provides $600 \mathrm{DPI} / \mathrm{A} 4$ resolution. Timing examples for $600 \mathrm{DPI} / \mathrm{A} 4$ reading using this mode are shown in page 15/21, 16/21 and 19/21 for reference.

In this mode, signal charges of adjacent pixels in even line can be merged at an output stage capacitor using intermittent reset drive. Timing examples for $300 \mathrm{DPI} / \mathrm{A} 4$ reading using this mode are shown in page 17/21, 18/21 and 20/21 for reference.

TOSHIBA
(s)
тоонна

TOSHIBA

Timing Example

Characteristic	Symbol	Min	Typ.	Max	Unit
Pulse timing of SH and $\overline{\text { SW }}$	t X	0	0	-	ns

Timing Example (600 dpi mode: $\overline{S W}=$ "L")

Timing Example (300 dpi mode: $\overline{\mathrm{SW}}=$ " $\mathrm{L} "$)

Package Dimensions

WDIP22-G-400-2.54C(B) Unit : mm

(Note 1) : TOP OF CHIP TO BOTTOM OF PACKAGE.
(Note 2) : GLASS THICKNESS ($\mathrm{n}=1.5$)
(Note 3) : No. 1 SENSOR ELEMENT (S1) TO CENTER OF No. 1 PIN.

Weight: 4.5 g (typ.)

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

